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RESEARCH STUDIES O F  RANDOM PROCESS THEORY 

AND PHYSICAL APPLICATIONS 

By George W. Bordner, Charles J. Greaves, and Walter W. Wierwille 

CORNELL AERONAUTICAL LABORATORYy INC. 
of Cornel1 University 

SUMMARY 

Many techniques of processing of random data have been presented 
which can be applied to engineering problems. Techniques for  estimating 
correlation functions and power spectral  densities for all classes of random 
processes, including nonstationary, stationary, gaussian bivariate, etc. , 
in  addition to deterministic processes have been described in a rigorous 
mathematical sense. 

Further aids to the processing techniques a r e  also given. 

The 

These 
include a complete thesis on the synthesis of optimal digital filters, 
including low-pass, high-pass, band-pass, and notch filters. 
technique of digital heterodyning is also presented. 
processing engineer methods of applying the techniques on a general 
purpose digital computer are presented. 

To further aid the 

Fo r  the previously unproven processing techniques presented, 
experimental verification is given. 

1 



INTRODUCTION 

On 1 July 1964 a project sponsored by the Computation Laboratory 
of the Marshall Space Flight Center, Huntsville, Alabama, was initiated 
with Cornel1 Aeronautical Laboratory (CAL) to perform a research study 
of random process theory. 
Computation Laboratory techniques used to reduce and .analyze random 
process data toward the objective of devising new o r  improved applications 
of statistics and random process theory to existing effprt of endeavor. The 
random processes of interest  were of meteorology, vibration, and acoustic 
measurements o r  any oth,er applicable random process. Of particular 
concern was the physical application of many reduction processes and 
functions that were not yet commonly applied to the existing engineering 
problems a t  Marshall Space Flight Center. 

CAL was required to examine the existing 

The CAL study was designed to meet the computation Laboratory 
objectives. The specific goals of the research study were to reduce the data 
editing and computer usage time, to increase the llaccuracy" of the statistical 
estimates of the processed data, and to recommend future applications of 
existing data reduction equipment. These improvements were to be a result 
of CAL's investigation of the techniques used a t  the Computation Laboratory 
and the appropriate application of: 

1. Digital filtering techniques 
2. Correlation function analysis 
3 .  Spectral smoothing techniques 
4. Special functions o r  processing 
5. 

Sponsor approval of these technical a reas  of work and a c ross  check 

Spectrum analysis of nonstationary signals 

with the requirements indicated a research program to meet the Computation 
Laboratory requirements. 
performed and the results given in the technical sections of this report.  The 
following i s  an outline of the material presented. 

The above l i s t  of 5 technical a reas  of work were 

A. Digital Filtering 

a )  Time and frequency relationships 
b) 
c) 
d) Notch fi l ters  
e) Digital heterodyning 

Synthesis of optimum digital f i l ters  
Optimum fi l ters  with the constraint of unity D. C. gain 

2 



B. Correlation Function 

a) Summary of available computational methods 
b) "Half -polarity" correlator analysis 
c) "Half-polarity". and "Full-precision'' correlators compared 
d) Correlation of signal plus noise 
e) Computer techniques of calculating correlation functions 

3 

C. Optimal Spectral Smoothing 

D. Deterministic Data Processing 

E.  Nonstationary Spectrum Analysis 

a)  Theory 
b) Experimental results 

F. Nonstationary Correlation Analysis 

a)  Theory 
b) Experimental results 

Conclusions to the above technical a r ea s  a r e  given in the Conclusion 
Section of this report. 
type of research performed for this project. 
more  extensive research in the areas already discussed. 
these a r e  summarized in the section on Recommendations for Further 
Work. 

One can always broaden the a r ea  of study for the 
Further,  one may perform 

Extensions as 

3 



DIGITAL FILTERING 

The results of discrete-data processing is greatly dependent upon 
the selection of an  appropriate sampling interval during the analog to digital 
conversion. 4*1n practice we know that no signal of finite duration has a band- 
limited spectrum. Under such circumstances the selection of the sampling 
interval must be based upon reasonable knowledge that the amplitude of the 
spectrum is negligible beyond some frequency 
may well be beyond the highest frequency of interest  however, the Nyquist 
sampling cr i ter ia  must  be satisfied at least  to a good approximation, thus 
the sampling frequency to be selected is 2 fc. 

f c  . This particular frequency 

Time-Frequency Relationships 

Where digital reduction and processing of data is employed, it i s  
often desirable to perform various pre-proces sing filtering operations 
Whitening and frequency band limiting a r e  only two examples of pre-processing 
operations. 

Extensive literature exists describing the many methods which may 
be employed in the simulation of transfer functions on general purpose digital 
computers. 11, 12 ,  13* 14, l5 It would be useful to relate the information 
available on time domain aspects of digitally simulated transfer functions and 
the frequency characteristics of these transfer  functions. Consider for example 
that a given frequency characteristics is needed for spectral prewhitening. 
With the use of conventional techniques, such as a Bode plot, this given gain 
frequency information can be represented by a transfer  function. 
function in turn i s  converted by techniques such as  those cited in Reference 15 
into a digital filter. 

This transfer 

If from the many techniques one i s  chosen which yields the sum of 
the e r r o r  squared in the time domain a minimum, it will also insure minimum 
power in the e r ro r  signal. Equivalently, it minimizes the integral of the 
square of the difference between the Fourier transforms of the actual and 
ideal r e  spons e. 

In the following diagram ,D9<Z) , the method selected to digitally 
represent the transfer function whose impulse response i s  
assumed to yield a minimum a t  the output. 

~ [ e ]  , is 

I(, 1- 

Superscripts refer  to the references. 
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F 

I N  
N n=o 

define Gee (kT) = - e(n7-)e(nr+kr) 

Let Ge(L) be the sequence (or Z ) transform of gecko taking the inverse 
sequence transform we have 

where the path j' is the unit circle. Evaluating both sides a t  k = o gives 
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j w  T changing from a contour integral by letting z = e 

where - 277 s - 7  

The above equation, is essentially the discrete form of Parseval 's  Theorem, 
illustrating the desired results; namely, minimizing the left-hand side of 
equation ( 5 ) i s  equivalent to minimizing the right-hand side. 

In general, then, the method of digitally simulating an analog filter 
which provides a best time response (with the mean-square-error cri teria)  
is also the one which provides the least  distortion from the ideal frequency 
response. 

Double-Ended Fi l ters  

In recent years  a considerable amount of l i terature has been written 
Unfortunately, much of the present l i terature on digital filtering techniques. 

does not explicitly state the basis  of the synthesis. Furthermore, in many 
cases  a very general class of f i l ters  is considered, thereby making the 
resulting expression for the filter weights somewhat cumbersome to apply. 

The class of f i l ters  to be considered here  is limited to those most  
useful to the pre-processing of data from which correlation and spectral 
density functions will be obtained. 

Optimality of the weighting sequences is based upon the minimization 
of the following e r r o r  index 

a. rc/E 

J = f F, (4 - - p 4  1 old (7) 
- % 

where 6 
desired ideal frequency function. 
carried out in Appendix A .  

is the actual frequency function achieved and fi;(u) is the 
Details of the minimization procedure a r e  

? 

In nonreal time processing of discrete-data it is feasible and often 
advantageous to consider the use of double-ended filters. 
respond before the input arr ived and the weighting sequence would have values 
for both positive and negative time hence the t e rm  double-ended. 

Such a filter would 

6 



The class of f i l ters  to be investigated is defined as the set  of all 
f i l ters  which can be expressed a s  a linear combination of f i l ters  of the following 
form: 

where 8 e), 1 (w) a r e  real  functions of the real  frequency variable 

and 
I 8 

1- = 0 

That is  to say /'=@I i s  a member of the c lass  if  F(u) can be 
expressed in the following form: 

i 

-P=0 

where kA, i s  any arbi t rary  constant. 

( 9 )  

The relationship between the folding frequency and spacing between 
data points i s  given by 

where 

7 , =  time spacing between data points 

dc = 1 V &  

Two properties of this class of filters a r e  apparent from the definition 
given in equation ( 9 ). 
zero at al l  frequencies and thus no phase distortion of the input signal i s  
produced. 
a s  is readily shown by taking the inverse Fourier transform of F@) . 

I[#) being zero implies that the phase function is 

Secondly, the impulse response is symmetrical about the origin 

Consider now the synthesis of a low-pass discrete-data filter whose 
ideal frequency characteristics a r e  shown in Figure 1 

7 



Figure I I DEAL FREQUENCY CHARACTER1 STI CS 

Taking the inverse tranform of F (d) yields 

The signal F(*) i s  frequency band-limited and thus can be sampled 
every .r seconds without causing frequency folding. 
been sampled and multiplied by 'r to res tore  the frequency gain i s  given by 

The function after having 

Frequency characteristics of the sequence f, i s  illustrated in Figure 2 ,  
where only two of the infinite number of shifted components have been 
included. 

8 



Figure 2 FREQUENCY CHARACTERISTICS OF f, 

If the input data i s  designated by x-r, then the output of this low-pass filter 
y, i s  given by the discrete convolution. 

From the basic low-pass discrete-data filter described above 
generation of a few of the more  commonly used filters i s  considered. A 
high-pass filter i s  formed by the substraction of a low-pass from an al l  
pass o r  unity as shown in Figure 3 . 

4 

Figure 3 FILTER COMBINATIONS 
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The weighting sequence for the high-pass filter is given by the sampled inverse 
Fourier Transform of 

Fu - FLP (@) 

which yields f h p  (n) = I - - fLP (a) 

through similar reasoning the generation of the weighting sequence for a band- 
pass filter would be given by 

Finally the notch filter is arr ived a t  from the substraction of a band-pass from 
an all pass and the weighting sequence for the notch is 

A variety of other freqeuncy functions can readily be achkeved through 
various combinations of the basic low-pass forms represented by equation ( 9  ). 

The weighting sequence arrived a t  in the foregoing discussion spans the 
From the standpoint of practical considerations, the sequence 

Since the c lass  of f i l ters  which have 
entire time axis. 
may only extend over some finite interval. 
been considered a r e  derived from the basic low-pass, the frequency characteristics 
of this filter using only a finite length of i ts  weighting sequence is investigated. 

The frequency characteristics of such a truncated sequence i s  given by 

7??=-N 
utilizing the  property that tn E fa the above expression can be placed in the 
following form 

N 

i f  the following changes of variables a r e  made 

the normalized frequency function is given by 

. 

A ser ies  of normalized frequency plots is included in Appendix B. 
The relationships between sharpness of cutoff and the parameter  N is 

10 



readily determined from an  inspection of these graphs. 
generation of these plots, which a r e  not commonly available, would in 
general be of greater  aid in the determination of filter weights than a 
relationship between the value of the e r r o r  index and IV . 

It is felt that the 
v 

Often it is desirable for a given numerical filter to exhibit unity D. C. 
gain in addition to other specified characteristics, 
optimum filter weights, which passes D. C. with unity gain, the constraint 
i s  multiplied by 2 
index. The filter weights obtained with this approach a r e  given by 

To obtain a solution for the 

a positive constant and added to the original performance 

Equation (21 ) gives the optimum weights in terms of the component filter 
weights. Details of the derivation of equation ( 2 1  ) a r e  found in Appendix C 

It is interesting to note that the filter weights specified by equation 
( 2 1  ) differ from those of Reference 22 which also exhibit unity D. C. gain. 
The discrepancy between the two results apparently a r i s e s  from the fact that 
no attempt was made in Reference 22 to obtain the weights based upon the 
minimization of a performance index. 

Notch Fi l ters  

In the calculation of power spectra, the effect of frequency spreading 
due to the use of any particular spectral window is minimized when the spectrum 
under consideration i s  prewhitened before final spectral analysis i s  performed. 
The shape and location of the prewhitening or  notch f i l ters  would be determined 
by a fast pilot estimation. 
in general with the implementation of notch filters, along with their inverses, 
to res tore  the spectral estimate. However, the additional time taken, if  any, 
must  be considered a s  a trade off for greater accuracy in the spectral estimates. 

Computational time for spectral analysis may increase 

A portion of the prewhitening may be achieved by a modification of the 
analog transducer transmission system; however, in almost all cases,  greater 
flexibility is provided by complete digital processing. 

As an alternative to the double-ended discrete filter technique, 
consider the following bilinear transformation given by: 

11 



which maps the entire left half of the complex s plane within the unit circle 
in the complex 2 plane. The application of this transformation upon linear 
constant parameter 
i s  often referred to as the Tustin transformation. Simplicity and speed with 
which the recursive weights a r e  computed make this technique advantageous. 
In general t e rms ,  consider the filter given by 

analog fi l ters  to produce a discrete-data recursive formula 

A c ai  sJ 
(23) . -  - 0  

F(S)  = n 
C bj SJ* 

J = O  

Applying the Tustin transformation to equation (23 ) yields the following 
recursive formula 

where the weights a r e  determined by 

where 

and r4 = aj o r  b j  respectively. 

illustrated in Figure 4 

R j  = A ,  O F  B j  

As a specific example, a notch filter with the analog pass characteristics 
is given below: - ~ 

s= 4- deZ 

S A  4- 2tdcs *t 13, a 

Application of equation ( 2 5 ) yields the following weights: 

1 2  



Figure 4 GAIN vs NORMALIZED FREQUENCY 
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The discrete-data frequency characterist ics will be similar  to that of 
Figure 4 when d67ii 2 . If this condition is not satisfied, the following 
relationship should be used: 

* 

f5do - c (28) 
* 

where k/l is the rejection frequency desired in the discrete filter and d o  
is the value used in equation ( 2 6  ) before the Tustin transformation is made. 
When total frequency rejection i s  not desired, damping i s  added to the 
numerator of equation ( 2 6  ). 

Heterodyning 

In situations where the power spectrum is desired for only a band of 
frequencies rather than the complete response, an appreciable savings of 
computational time may be achieved by filtering and heterodyning before 
spectral analysis i s  performed. The actual time saving depends upon the 
width of the band of interest,  and i ts  location within the spectrum. 
advantage of this technique will diminish a s  the band of interest  approaches 
the origin (i. e . ,  zero frequency). 

The 

Before taking a quantitative look at the trade-offs involved in this 
heterodyning scheme, consider the system diagram and the characteristics 
of the specific filters. 
process concerns discrete data; however, similar arguments can be stated 
for analog data reduction techniques. 

The following discussion of the filtering-heterodyning 

The processing to be performed is illustrated in Figure 5. 
The output of the filter heterodyne system A3(w) is given in the time domain 
bY 

Where, by definition 
m 

is the discrete convolution. 
yields the following expression for the frequency response of A3 (%r) 

Taking the Fourier transform of equation (29  ) . 

The signal A+r) i s  processed in the usual manner to obtain its autocorrelation 
function and power spectrum. 

? 
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given. 
and thr 

r, (w) 

To demonstrate the effect of this s ignal  processor,  an  example is 
Shown in Figure 6 

ee  ideal filter frequency responses along with the power spectrum 
of A 3 b T ) .  

is a sample power spectrum Po @I of A, C+J@ 

Considering a typical numerical example, let  
f c  = 3500 cps 

w, = . 5  4 

A W  = W 2 -  id, = .3W,  

T = 1/7000 

length of record = 1 second 

The double-ended filter responses a r e  given by 

Since the band from w' to cn/z has been heterodyned down to 0 t o  A@ , a 
new sampling interval, TAW , can be used for processing ,Q,(-T) . Then, 

Truncating to the nearest  integer gives 

Then, for the processing of A 3  C + J ~ )  
Utilizing 10% of the samples wi l l  yield a frequency resolution given by 

, every third sample i s  selected. 

5. 

P 

I 

f,,, 233 
- = lo  CPS 
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- U c  U C  

Fi gure 6 SAMPLE SPECTRUM 
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Keeping the cut-off amplitude of the digital f i l ters  in the time domain 
within 5% requires the use  of twenty weights of f,(*) and forty weights of 

correlation and spectrum a r e  summed to get the total computer time. 
yields approximately 502 normalized computer operations (average FAD time = 
1.0) for  the computation of the unweighted power spectrum of A4(%,7r) via 
digital heterodyning. To compute e[&) with the same resolution without 
heterodyning, 192 1 normalized computer operations would be required. Then 
for this particular example, the time savings factor is 502/1921 = . 2 6 .  

f ;  (37) per side. The times to filter,  heterodyne, filter and compute the 
Summing 



AUTOCORRELATION FUNCTIONS O F  
STATIONARY PROCESSES 

With the advent of the general purpose digital computer many users  
have developed general purpose data reduction programs. 
useful results of these processors has been the computation of power spectral 
densities. Analog processors usually use fPlters to directly obtain the spectra. 
Digital methods usually employ the technique of first computing the correlation 
function of the proce,ss, then the power spectral density is obtained by 
(digitally) performing the Fourier  t ransform of the correlation function. 

One of the most 

The disadvantage of this technique is the tremendous number of 
multiplications and additions usually required. For  this reason, new 
techniques have been studied which, when properly applied, will reduce 
the computational time. These techniques and methods of application 
a r e  given in this section of the report. 

The Usual Correlation Computation. - Assume that a zero-mean 
sequence of N' uniformly-spaced samples %, is available. Common 
practice i s  to compute a correlation function a t  lag +n by the process: 

I/-* 

o r  by the process 

AI -m 

Where Y, has the f u l l  precision of the data samples. These correlators 
a r e  referred to a s  the "full-precision'' correlators.  
case for each m , (U--) 
with I d - m )  additions. Neglecting the scaling for  each m in the RZ 
method, a total of 

Note that in either 
data multiplications a r e  required, together 

multiplications and the same number of additions a r e  required. 
N and Im-,+ a s  many as IO7 multiply and add times may be 

required. 
quite long even for the very high speed general purpose computers of 
today. 
be quite useful. 

For large 

Such large numbers of operations make computational times 

Hence, methods which employ only fast  logic and additions should 
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Alternate Schemes.  - A first alternate scheme is to compute 

>k 
where "?;3" i s  the signum function. In this scheme, multiplicati n a r e  
avoided. 
a plant-identification scheme. 
has been termed the "half-polarity correlation. I '  

? J  in The method has been used in a cross-correlation context 
During the remainder of this report,  

A second alternative scheme i s  to compute 

N -h 

In this scheme, multiplications a r e  avoided, and fas t-assess  storage is 
reduced. Applications of this system have been suggested for spectrum 
analysis for ECM, and for detection devices 3 J  4* '. 
been termed the polarity coincidence correlator. I '  

This scheme has 

A third alternative scheme is to compute 

This scheme avoids multiplication in a manner similar to the "quarter-  
square multiplier" concept used in analog multiplier . 
the transformer-rectifier-dc-output phase d tector. ' Applications to 
nonsinusoidal waves have been discussed. 5 J  ' This scheme has been termed 
the "linear rectifier correlator. I '  

It is the basis for  

20 
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Accuracy of the Alternate Schemes - Gaussian Noise. 
sequence 3, represents samples f rom a stationary gaussiqn random 
process,  the alternate scheme R 3 l m )  is, for large  IV , an unbiased 
estimator of the t rue  correlation function, within a known multiplicative 
constant. 8~ 9 ,  lo  Not only i s  
deviation in the output i s  not much l a r  e r  than that for  the multiplier-square 
correlator in certain evaluated cases.  

- When the 

Rjt -1  an unbiased estimator, but the standard 

% 

The alternative scheme RY(") does possess a known, arcsine-  
10 shaped bias. 

can in principle be removed. 
analysis the bias may not seriously degrade the spectrum. 
gaussian noise, for example, the spectrum is distorted less  than 2 db, a s  evi- 
denced by a power se r ies  exp n ion of the arcsine function. Again, little 
statistical efficiency is lost.  ', 
advantage of R, over the rZ, correlator,  can be realized unless special 
purpose computers a r e  used. 

This bias, which can be computed by standard techniques, 
However, it i s  possible that for spectrum 

With Markov 

However, little computational speed 

Accuracy of the Alternative Schemes: Arbitrary Inputs. - Little 
can be said in general for the accuracy of the alternative schemes in the - 
arbitrary-input case.  

performed here  indicates that i f  the arbi t rary  signal has a large component 
of gaussian noise, the correlators 
possess small bias. 
nonlinear control systems. 

It can be observed that for  a sinusoidal input, for 
g3C--) the correct  cosine correlation function results.  * Analysis 

2, , 125 can be made to 
This lat ter  effect is similar  to the effect of dither in 

Half-Polarity Correlation for a 
Gaussian Random Process  

If the parent distribution of the stationary random process V, 
i s  bivariate Gau'ssian, one can compute the expected value of the half- 
polarity correlation function 

A/-- 

The correlation function of ,a stationary process V,., i s  defined a s  

r :$ 

ser ies ;  
This is easily proved by expanding the signum function into i ts  Fourier 

only the fundamental contributes to the average. 
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where ti 3 is the expected value. Now the expected-value of the 
estimator I?,(%) i s  

then 

where +(e, -) i s  the joint density function of 4 and e . Given 
that the 7 process had zero mean and normalized correlation of 

where rA =. R ( o )  

Substituting ?(a, w) into the indicated double integral yields 

22 
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The exponent in the second integral can be written a s  

substitution yields 
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performing the integration by letting Y = - A= 
2 c T a  

Hence for a stationary gaussian process with zero mean and normalized 
correlation of pt*) , the P3 (3n) i s  a biased estimator of the true 
correlation function. 
function p and p3 is computed a s  follows: 

The relationship between the normalized correlation 

Since 

54 

The new normalized correlation function is therefore approxi- 
mately unbiased. Since R - , I m )  can be computed more rapidly than the 
full-precision estimator, computer time can be saved i f  zero-mean 
gaussian random variables a r e  to be processed. 
test  for a gaussian process.  
correlation function invariance, e. g .  pure sine waves or  square waves with 
random phase. (See Ref 9).  

Note that this is also a 
Other random processes also exhibit this 

24 



Comparison of g3 and . - For  the work report  
here,  NASA supplied CAL with four time records which a r e  typical of the - -  
random process^es analyzed by the computation Laboratory. 
were processed by CAL using the fil, and iZ, correlation techniques. 
The resulting correlation functions and power spectral densisite (PSD) for 
the two techniques a r e  shown on plots in Appendix De The PSD's 
were obtained by computing the Fdurier  t ransform of the corresponding 
normalized autocorrelation functions. 
to the PSD) 

These records 

(Harming smoothing was also applied 

Upon visual comparison, one can see that the spectra a r e  in very 
close agreement. 
the analysis but such measures. a s  the average , RIW 5 , and variance 
of the differences between the /?,(+) and R 3 1 - )  and resulting 
power spectra did not yield useful comparisons. 
comparison is the visual examination of the plots. 

Several "numerical" comparisons were attempted during 

Perhaps the 'Ibest" 

Methods of Computing the Half-Polarity Correlator. - A complete 
digital program was written to compute in minimum time the 
correlator defined as: 

Z's-) 

N-m - 

A prepacking technique, written in MAP, enabled the /2, (31) to be 
computed without any "IF" statements, etc. , SO that only (&-*I ADD 
times a r e  required pe r  lag. To further reduce the computation time, the 
above summation for k'3 was replaced with the equivalent Stieltjes 
summation (after the Stieltjes integral). In-FCect the Y,, +- a r e  
replaced with the accumulative xw+- I ,=, z pi and 
i s  replaced by 7 u* 

When 6, = 0 it is unnecessary to compute the "product, d,, x,,, , 
thus an ADD time is eliminated for each 61, = 0 . The flow chart of 
the E,(-) correlator i s  given in Appendix E . A complete 
theoretical treatment of the correlation function of quantized date 
(including R3 ) is contained in  Reference 21 , and indicates that for 80 to 
90 per cent of experimental data, d, i s  zero. For  the NASA data, 
summarized in Table 1 , about half the b/% were equal to zero. 

Table 1 summarized the computer time required to calculate 
the PSD functions of the NASA data records. 
the 

Note that the computation of 
Pll*) correlation function has been minimized somewhat because Fortran 
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programming was not used. 
can be seen in Appendix D 

A detailed comparison of the resulting PSD's 
, a s  mentioned in the above discussion. 

e CORRELATION 

PSDf' 

MISC ELLAN EOUS : 

TABLE 1. COMPARISON O F  COMPUTER a TIME 

238 11 

56 56 

16 16 

310 TOTAL TIME 

Input, Output, Cosine Table, 
and Hanning 

83 

a 
, 

b 
IBM 7044 - 2 usec/cycle. 

For  4 example records furnished by NASA. 

Using'IMAP'' programming, this R, correlator takes 
approximately one-half the time of the equivalent Fortran 
compilation. 

Half -polarity correlator with prepacking and Stielje 's 
Integration technique. 

d 

e For  700 lags and 7000 data points. 

For  700 values of frequency. 

g The 56 sec.  can easily be reduced to 14 sec. with a more  
"optimum" computation of the Fourier  transform. 

Times can be reduced to 268 and 41 sec. respectively 
with the more "optimum" PSD computation. 
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Correlation of Signal Plus  Noise 

In the above sections, the & correlator  was shown to be an 
unbiased (or known bias) estimator of the true correlation function for 
certain random o r  deterministic processes;  for example, a gaussian 
bivariate process and a single sinusoidal signal. 
and summarized in the previous section of this report that the 
correlator can have a s  much a s  20:l computer time advantage over a ca re-  
fully programmed R ,  (full precision) correlator. It becomes apparent that 
computer time can be minimized if  the /?J correlator  can be used for a 
larger c lass  of randoh  processes. 
to determine, by a rapid testing procedure, to what class a given signal 
belongs. 
procedure however, this a rea  of research is recommended for future study. 

It has also been demonstrated 
R, 

Furthermore, it  would be necessary 

Not much effort has been applied to determine a good testing 

On this pr,oject more effort was expended io increase the class 
of random processes for which the /?J estimator i s  unbiased. An analysis 
has been performed to compute the bias of the R3 
stationary processes.  The technique i s  to add uncorrelated noise (white) to 
the random process before using the E3 correlator.  One processes the 
signal plus noise rather than signal alone. 
plus noise by the k'a correlator be designated by Rs' . Then the expected 
value* of this correlator is  given by 

correlator for a l l  

Let the processing of signal 

where 

c *  m f o  

4; = samples of signal 

,/m = rms  value of white noise added 

The above relation indicates that the 
estirnate of the 

E$+) correlator yields an unbiased 
/ Z L f - )  correlator when the noise strength i s  sufficiently 

, 
*See Appendix F for the derivation of this expected value. 
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large  compared-to the signal sample and * # U  . For  zero lag ,  -=o, 
an additional t e r m  appears and i s  a direct  consequence of the addition of 
white noise. 
the bias is of known magnitude and can be compensated for. 

This t e r m  will produce a bias in  the PSD function; however, 

With the knowledge that the expected value of the k,' correlator 
is that of the Rr correlator for  any process 9% under the conditions 
cited above, the variance of the e r r o r  was then investigated. 
expression for the normalized variance of the e r r o r  for  non-zero lag  is 
given::: as 

An approximate 

The f i rs t  t e r m  of equation ( 5 9 )  may be looked upon a s  a bias t e rm  and the 
second t e r m  a s  the noise-in-output contribution. Increasing the noise 
strength will reduce the bias tkrm; however, it will increase the noise-in- 
output contribution. 

Test  of RJ on Signal Plus Noise.  - In order  to show the 
effect of adding noise to the signal before processing with the 
correlator, a test  case was generated. 
function 

The tes t  signal was a periodic 

y(kl = & 2 7 r ( 7 U U )  f- 3 1 A&% 2 ~ f z l O O / - d  ( 6 0 )  

which has zero mean. Since F i s  a distorted sinusoidal function, the E3 
correlator,  used directly to estimate the correlation function of ir , 
will not provide a ttgood"estimate. 

As described above, one should add uncorrelated noise to 
the signal % before processing with the k'3 correlator.  For  the 
sample signal selected the variance of noise added was se t  equal to the 
variance of Z . (This variance of 3 has to be precomputed). To 

::The assumptions and derivation of this expression i s  not given in 
this report. 
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demonstrate the results,  the correlation functions and the respective power 
spe c t ra  were computed a s  follows: 

(1) The full precision correlation function of Y@J . 
This should give the "best" estimate of the t rue  spectrum. 

(2) The half-polarity ( 4 )  correlation function of yfdj . 
This should give a 'IpoorlI estimate of the spectrum. 

(3) The half-polarity (4) correlation function of Tc-t/ 
plus the uncorrelated noise. 
than ( Z ) ,  but not a s  "good" a s  ( 1 ) .  

The resulting spectrum should be "better" 

The resulting spectra a r e  shown in Figure 7. Although 
do tes t  for "goodness" i s  given, a visual examination of the plots 
certainly demonstrates the useful effect of adding noise before using the 
half-polarity correlator.  
i s  compared to P,(u) . Also note the accurate estimate of the power 
a t  the two frequency components of 

Note how smooth the spectrum of P3 (w+ F) 

X(d) , namely 700 and 2100 cps. 

High Speed Techniques of Computing 
the Full -Precision Co rr elator 

Rather than sacrifice the full precision of the sampled 
sequence L fo r  computer speed, various methods of calculating the 

lz, f-) o r  /Z,l--) have been investigated. One simple method is to 
use "tighter" programming , that i s  programming in basic machine 
"language" to avoid the inefficiencies of a general purpose compiler such 
a s  FORTRAN. Further,  "optimum" use of the commands available with 
various machine types can help to reduce the computational time. 
example, the variable word. multiply and accumulate (VMA) command of 
the IBM 7044 can be used to  great advantage. 

For  

Other schemes employ special (digital) computing machinery 
to cal'culat the correlation functions. 
numbers " 9  3 2 9  3 3 *  3 4 .  
The residue number system i s  of particular interest  because the 
arithmetic operations of addition, subtraction, and multiplication may 
be executed in the same period of time without the need for carry. The 
equipment proposed in the literature suggests very rapid computation of 
correlation functions. Unfortunately, the scheme could not be conveniently 
programmed o r  a general purpose digital computer, so extensive 
study, for comparison to other methods, was not completed during this 
contract. 
correlation funtions in almost real  time, this special purpose technique 
should be considered. 

One method is  to use residue 
This scheme was studied for this contract. 

It is suggested that where one desires to calculate the 

Other programming techniques use the table look-up to great 
One such method was recently proposed in a let ter  to the advantage. 
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Figure 7 T E S T  O F  Rg CORRELATOR WITH SIGNAL PLUS N O I S E  
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P 

editor of the Communication of the ,Association for Computing Machinery 
(see reference 7). 
coupled with the well-known "quarter square" method used for analog 
multipliers . 

This method suggests the use of table look-up 

Further techniques suggest the use  of pre-sorting and packing 
of the data, which usually eliminate many multiplications because of the 
"sameness" of the quantized samples. 
by W. D. F rye r  of CAL. This method i s  summarized in the following 
sections of this report.  

One such method has been- designed 

The P re - so r t  Correlation Method (PSCM) 

In the implementation of the pre-  sor t  correlation method 
(PSCM) described in this section, numerical data a r e  quantized, sorted, 
then transformed into a se t  of executable computer instructions for rapid 
calculation of the correlation sums 

Here A = f A, ~ , L =  /,z,.-../v 3 dnd 13- 2 4 ,  .c =/,2 e - '  4 a r e  
two96 data sequences of length #; k is thesso-called l ag  number; 
i s  the maximum lag number; and the C"a may be thought of a s  
unnormalized correlation function values. 

L 

In order  to use the method, data in one of the sequences 
( A , say) a r e  quantized, so that magnitudes of these data assume a t  
most ,Nv different values. The method provides a speed advantage when 

N" LC /v . The ratio p = N / d p  i s  a measure of speed 
improvement factor over conventionally coded methods, in a sense to be 
defined exactly la ter .  

Conventional Coding: Timing. - In order to set  a reference 
for judging the savings in number of instructions and in speed, a typical 
coding of the C, sums, Eq. 61 i s  shown here  in the language of 
IBM 7000 - ser ies  computers : 

*The program always t reats  the A and B sequences as logically distinct, 
even in autocorrelation sums where - -  originally - -  they may be 
numerically identical. 
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(Initialize index register I to d-4 ) 

(computing loop ended) 

An individual t e r m  in any one of the Cd sums corresponds to a single 
passage through this sequence of instructions. 
values, the amount of computing time required would average about 20 
cycles (40 microseconds) for  the fixed-point instructions , ' just  slightly 
more for the floating-point instructions. Thus, evaluation of say C., 
requires about 20N cycles. 

In t e rms  of IBM 7044 timing 

PSCM: timing. - Before describing the PSCM itself, the manner 
An add instruction must  be in which its speed advantage a r i ses  is discussed. 

executed the same number of time (N times for C, ) a s  in conventional 
coding. 
executed not I V  t imes, but about = N/p t imes (where p = A//,vly 
is the "improvement factor" previously mentioned). 
will a r i se  la ter(  i V =  7000 -, nl, = /OW 1 ;using this value for illustration, 
the evaluation of L; , using the PSCM, would require roughly 

However, it i s  approximately t rue  that a l l  other instructions a r e  

The value p = 7 

compared with 20 N' 
p r evious pa rag raph . 

cycles for the conventional coding method of the 

Description of the PSCM: Example. - Logic of the PSCM is 
demonstrated here  by means of a simplified, illustrative problem. 

Suppose the A data, after quantization i f  necessary, assume only 
values % I ,  t 2 , o r  - + S  according to this partial table: 

P =  / 2 3 4 5 6  7 0 -uM-/ r /  

42 = 3 2 -3 -3 1- -2 -/ . c .  - /  2 

Conventional coding for the zero-lag sum, 
tion of the sum 

C, , is the direct implementa- 

c, = 3 4  .+z BL - 32.3 -3ar 4 q. -"!3+ - 1R,+- - f$ - ,+Z&,  
(63) 
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with, of course, n/ multiplications, (algebraic) additions, and auxiliary 
instructions. 

Coding the pre- sor t  method, in contrast, directly implements 
this numerically equivalent formulation: 

The dominant feature, of course, is that an algebraic sum of Ph,, = N/3 
t e rms  (on the'average) may be accumulated before a multiplication i s  
necessary.  Or ,  put differently, only three multiplications a r e  necessary, 
rather than /y 

It i s  not obvious, f rom this example, that the auxiliary 
instructions (the LDQ, the STO and the TIX instructions) of the conventional 
coding a r e  also largely removed. 
accomplish this additional time savings. 

The PSCM can be coded, however, to 

Programming Logic for the PSCM. - Although the previous 
example demonstrates the principle by which a time savings may be achieved, 
the actual programming requires careful attention to details. 

F i r s t ,  data in the A sequence may require quantization. 

Second, these data must then be sorted into blocks, each 
block corresponding to a distinct value of magnitude. Data inserted into 
these blocks must ca r ry  information about their locations in the original 
sequence. 

Third, data within a block must be converted from 
numerical to instruction words, either ADD (if  data positive) o r  SUBTRACT 
( i f  data negative). 
address values (determined from locations in original sequence), and with 
an index.register tag. 
an  algebraic subtotal such a s  represented in equation (64) by the parenthetical 
expressions. 

These instructions must also be supplied with proper 

Each of these blocks, a t  execution time, will form 

Fourth, instructions must be inserted between blocks to 
multiply (block "value" times subtotal) and to update the over-all sum. 

Fifth, "header" and "trailer" instructions must be provided for 
ini t ial izhg an index register  (in accordance with lag number 
location of the B sequence), for  initializing sums, for storing results,  and 
for terminating calculation a t  the proper time. 

absolute 

Figure 8 shows what typical sections of storage would 
contain, after the conversion of the A data. 
that A data i s  used in the previous example with N' 5 lo00 . Let these 

Assume for definiteness. 
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DEC I MA1 I lnCATlfl 

ORIGINAL A SEQUENCE, 
NUMERl CAL, QUANTI ZED DATA 

34  

- 
5001 B1 

5 0 0 2  B 2  

3 0 3  B 3  . 
6000 1000 

"BUFFER" ZONE - 
ALL  ZERO WORDS 

6000 t L 

--4A4&- 

B SEQUENCE 
NUMER I CAL DATA 

Figure 8 

I 

TO THE VALUE - (5000 + k )  

STO TEMP I 
INTERBLOCK 

TEMP INSTRUCTIONS I LDQ THREE 

STO SUM 

CLA ZERO I 
SUB 6 , l  . 

II-ADD 1000, I 
h 

I 

- 
I 

STO TEMP 
LDQ TWO 
MPY TEMP 
ADD SUM 
STO SUM L CLA ZERO 

I 

ADD SUM 
STO C(k) 
( I F  k<L,  GO TO 
BEG INN I NG FOR 

OTHERWISE STOP.) 
NEXT VALUE OF k. 

" 2 1 s "  BLOCK 

i NTERBLOCK 
I N  STRUCTI ON S 

I1 s" BLOCK 

TRA I LER 

EXECUTIBLE INSTRUCTIONS, 
FORMED FROM A DATA 

REPRESENTATI VE DI  AGRAM O F  STORAGE 



1000 A-data be stored in locations 1001 through 2000 (decimal); the 1000 
B-data be stored in locations 5001 through 6000; and assume something more 
than 1000 words, beginning near 7001, reserved for  formation of the 
modified A-data - - the executable instructions of the program. 

Suppose now that the correlation sum for lag number 
is desired. The program a t  the right-hand side of Figure 8 would process: 

4 = 0 

Index register  1 set  to the value -5000. 

Accumulator zeroed. 

The next instruction reads ADD 1, 1 .  

I ts  effective meaning is: ADD 5001, 

that is: ADD 8, 

Similarly, the next few instructions a r e  effectively: 

Thus, the "3's" block forms 

8, - B , - R , + ' - - '  9 

The f i r s t  parenthetical expression of equation (64) . The interblock 
sequence forms 3 ( 13, - 13, - t , .) , ) , and stores this partial 
sum away in SUM. Analogously, the " 2 ' s "  block forms the subtotal 

the second parenthetical expression of equation (64) . 
instructions multiply this subtotal by 2 and increments SUM accordingly. 

The interblock 

Finally, the ( I  1 s" block forms the subtotal 

and final incrementing of SUM to give is executed in the "trailer" . 
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The program would now return to the s tar t ,  with 4 se t  equal 
to 1, and index register 1 initialized to the value -5001. The following 
sequence of instructions will then form 

which i s  the correct  value for the c, correlation sum, except that 
beyond the nominal extent of the original 8 ar ray  - -  has appeared. Thus 
the sum will be correct  i f  the location O,,, , contains zero. Generally, 
this over-extension of the original 6 a r r ay  will occur, eventually, for L 
locations, and may most easily be handled (with only small loss of time, 
since the number of lags, L , i s  usually a small percentage of the total 
data record length, A/ 
the 6 array.  

) by adding zero-valued buffer words a t  the end of 
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OPTIMUM SPECTRAL SMOOTHING 
FOR STATIONARY STOCHASTIC PROCESSES 

The cr i ter ia  of bestness which i s  used to obtain optimum smoothing 
weights is given by the following performance index: 

In equation (65) the power spectral density function ga (..I) 
which i s  obtained when a given correlator and lag window pair a r e  selected 
to operate upon the data to be analyzed. 
of sa(&) yields 

is  the spectrum 

Taking the inverse sequence transform 

where in (66) 0 represents the lag window and the correlation function. 

The true underlying power spectra of the process being analyzed i s  
specified in equation (65) by g,. GJ) 
weights a r e  found by minimizing the expected value of c7 with respect to DJ* 
Results of this analysis, details of which a r e  contained in Appendix 6 ,  i s  
given by the following expression for the smoothing weights. 

and in general i s  unknown. Smoothing 

where 

4 = true correlation function 

r\/ = number of data points 

Restrictions on the index in equation (67) a r e  implied by limiting 
the c lass  of correlators being considered to those which yield a zero value 
of correlation when the lag value equals the number of data points. 
particular, i f  the R2 correlator is selected, the expression for the optimum 

In 
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weights in equation (67) becomes 

If the ratio of the correlator variance to the true value of correlation 
squared i s  defined to be the normalized variance -3 
used to compute the assumed normalized variance 3 
window selected, 
variance for some of the more  "standard" lag windows in use. 
the normalized variance i s  often assumed to be infinite after a lag value 
of about ten percent of the record length. 

, equation (68) can be 

It would be of interest  to obtain plots of this normalized 
as a function of the lag 

In practice, 

A plot of the assumed normalized variance should in fact accompany 
each power spectral density function since the latter is computed with the aid 
of the former.  The great  number of questions which would undoubtedly a r i se ,  
f rom those interested solely in a final spectral density function would most  
likely preclude the effective use of such a plot'. 

With the assumption that the process under investigation i s  Gaussian 
equation (68), as shown in Appendix H, may be expressed a s  

The relation given by (69) illustrates the need for appropriate prewhitening of 
the spectrum when a "standard" lag window, which becomes zero well before 
the maximum possible lag, i s  utilized. The effect of prewhitening i s  to reduce 
the correlation @  PO) at a given lag and thus dictates the use of a lag window 

D which decreases with increasing lag 3 . This i s  so since the numerator 
term in (69) is  4" while the denominator contains &&-$ . When increased 
accuracy of the spectral estimates is the main concern however, it appears more  
advantageous to generate the smoothing weights in the manner later  described 
rather than select a standard window. 

The arbi t rary  selection of a given set of smoothing weights, when 
adequate prewhitening i s  omitted, i s  to a degree forcing the shape of the f i n a l  
spectrum to take on certain aspects. 
solution (or envelope of solutions) to equation (69) when the weights & 
selected to be Hanning, Hamming, Bartlett, or any one of the other standard 
forms. 

It would be informative to obtain a 
a r e  
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Adequate prewhitening implies some knowledge of the spectrum under 
This knowledge may well represent the summation of previous 

However obtained, this best knowledge can be used in conjunction 
Generation 

consideration. 
experience with a given process o r  perhaps information obtained from a pilot 
estimation. 
with equation (69) to produce a set  of optimum smoothing weights. 
of the weights in  this fashion will remove the necessity of prewhitening 
operations but will in general increase the maximum lag value of the cor-  
relation taken into consideration. 

DETERMINISTIC DATA PROCESSING 

Consider the generation of a power spectral density function, for a 
single record X ( t )  of length 7 seconds, by the following formula (see  
Reference 23, p 50). 

(eJ f x c t j  

i- 
@@I = 

( 7 0 )  

In equation (70), 'it is assumed that the signal i s  zero outside of the observation 
interval of 7 seconds regardless of whether the signal actually exists outside 
this interval o r  not. Application of equatisn (70) will be referred to as  deter-  
ministic data processing. This classification follows logically since in (70) 
there i s  no notion of an  ensemble of signals, nor signals of infinite durations. 
The average power between two frequencies W ,  and UZ for the observation 
period i s  also precisely given by: 

P u13 
I Avg. power within frequency - _c 

band U J ~ -  ccl, - ?zr; J ,@(SJ)JQJ 
d u, 

Reasons for the selection of a deterministic approach to spectral 
As a hypothetical case, consider the analysis in any given situation vary. 

testing of a gear box which i s  known to be defective. 
the piece of machinery is interested in determining the faulty gear before 
discarding the gear box. Expediency dictates a ser ies  of tests with micro-  
phones while the gears a r e  running rather than disassembly and inspection. 
The record length is selected in accordance with the frequencies of interest. 
Since the concept of infinite record length cannot possibly yield additional 
information, the signal is processed deterministically. 

The analyst who receives 

The R,  correlator discussed ear l ier  satisfies the definition in (70).  
It i s  significant to observe that no negative power will result in the final 
spectrum with this approach, If in the interest  of speed of computation, the 
correlation function is not evaluated up to the maximum lag, a unity lag 
window should be utilized. 
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NONSTATIONARY SPECTRUM ANALYSIS * 

The successful characterization of a nonstationary power spectrum 
depends largely upon assumptions about the actual time variations of the 
spectrum. 
implies some a pr ior i  knowledge of the process or its spectrum. 
knowledge of the time variations may enable the spectrum analyzer to be 
designed in an  optimum manner for a particular type of nonstationary 
process. 
the lift-off phase and i ts  subsequent passage through the atmosphere which 
may represent a nonstationary process whose power spectrum i s  slowly 
time-varying. Analysis of this record a s  though it were representative of 
a stationary ergodic process may result in serious misconceptions a s  
stationary processing cannot yield information about specific frequencies 
a t  particular times. 

Restriction of the general c lass  of nonstationary processes 
A pr ior i  

Of considerable interest  i s  the vibration record of a rocket during 

The conventional method of obtaining the power spectrum of a 
nonstationary process i s  based upon the assumption that the statistics of the 
signal do not vary appreciably over some interval. 
this method is that the selected intervals may be too short to yield accurate 
spectral estimates. 
possible time variations in the measured spectrum. 

The greatest e r r o r  in 

If longer intervals a r e  used, the effect is to mask 

The principal results to be summarized in this repors i s  the 
experimental verification of the usefulness of a new technique 
obtaining the time-varying power spectrum of a nonstationary process.  
The nonstationary signal that was selected f o r  study is representative of 
the modulation used in "chirp" radars.  
a s  a sine wave whose instantaneous frequency is slowly increasing a t  a 
constant rate. 
representative of a wide class of nonstationary signals with the further 
advantage that the nature of the time variation in its power spectrum can 
be readily visualized. 

for 

The signal can best be described 

The main reason for selecting this signal i s  that it is 

Theoretical Considerations 

The major premise of the nonstationary analysis method used in 
this study is that of a n  ensemble-average power spectrum. 
stationary process, consider a group of signals whose statistical description 
of the group is defined across  the ensemble for each instant of time. If it be 
allowed that this statistical description across  the ensemble can change with 
time, it  i s  clear that a properly defined ensemble-average power spectrum 
wi l l  exhibit time-variations and wi l l  have the same time dimensions a s  the 

As  a non- 

statistics of the ensemble. 

s p , q  

:$ By Gilbert A.  Gagne 
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where r,,,(t,u) represents the energy at time f and frequency w of the 
a fL  signal of the ensemble ym ( t )  . The corresponding definition of the 

ens emble -average autoco r r elation function i s  

In order  for the expression for the -nonstationary power spectrum to apply 
also in the stationary case, it  Is necessary to define the autocorrelation 
function ~ [ t ,  't.) as  an even function of the variable 2 , thus 

The time-varying power spectrum can now be obtained from the time-varying 
autocorrelation by Fourier transformation with respect to the lag 
variable 2- : 

-00 

Application of inverse transformation to s( t ,  
autocorrelation function, the other member of the Fourier  transform pair: 

yields the time-varying 

The nonstationary process selected fo r  study can be described by 
the following ensemble: 

where 63, 
ensemble. 
single member which can be represented by 

is a random phase angle associated with each member of the 
Analysis of this ensemble was performed by considering a 

y H ( f )  = A C O S  [Q(j)] + (f) ( 7 7 )  
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where lz ( t )  is wideband gaussian noise whose power spectrum can be 
considered constant. The instantaneous frequency of y ( t ) i s  given by 

which clearly shows the t ime dependency of the frequency. 

The Detection Process .  - In most physical Rituations, there is 
usually only one record available f rom which the power spectrum of the 
process may be derived. 
autocorrelation function and power spectrum were derived f rom notions 
of ensemble-averages, some smoothing must  be performed on the single 
record to estimate S ( <  w )  . The best  estimate of 5 (f, w )  i s  that which 
i s  obtained by applying maximum smoothing without destroying either the 
desired time o r  frequency information. 
in Figure 9 is well suited for nonstationary spectrum analysis because 
it allows frequency smoothing to be separated f rom the time smoothing. 
Frequency-axis smoothing of the S ( t ,  L )  
predetection band-pass f i l ters ,  while the time-axis smoothing occurs in the 
post-detection low-pass f i l ters .  

Since our definitions of the nonstationary 

The analyzer configuration shown 

function occurs in the 

The amount of frequency-axis smoothing performed on the signal 
i s  dictated by the bandwidth of the predetection filters. 
processes of interest  a r e  characterized by continuous changes of frequency. 
Since any particular frequency may be present only momentarily, it is 
not possible to determine that frequency precisely due to the uncertainty 
principle relating time and frequency. 
to accept some smoothing along both the time and frequency axis and 
determine the presence of a band of frequencies rather than a single 
frequency . 

Nonstationary 

Consequently, it becomes necessary 

Attempts to simulate the analyzer of Figure 9 on an analog 
computer revealed several practical difficulties. 
that of maintaining identical bandwidths for each leg of the analyzer. 
of heterodyning techniques eliminated the bandwidth problem while retaining 
the desirable features of Figure 9 . 'The principal feature of the analyzer 
shown in Figure 10 i s  i ts  ability to display any line of the spectrum selected 
by the local .oscillator. 

The most serious being 
Adoption 
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The predetection f i l ters  shown in  Figure 10 a r e  Butterworth f i l ters  
with low pass  characteristics and whose transfer  functions a r e  

The damping ratio of the predetection filters was set  a t  0.71 and the band- 
width was 20 radians. A simple f i rs t  order  low pass filter with bandwidth 
0.  2 radians was selected for the postdetection filter.  

. The nonstationary test  signal represented by equation (77) 
which was applied to the spectrum analyzer i s  described by 

-at f e cos . s t 2  i- 

-w t 
where e 
signal and M(*) i s  a wide band gaussian noise signal. Equation (80) 
was generated directly on the analog computer with wide band gaussian 
noise added from an external source. 
generation of the test  signal, it  was necessary to switch in a t  several 
points in each data run sufficient damping to reduce the signal levels in 
the generator thereby preventing saturation of the amplifiers. 
consistency this switching was performed a t  precisely the same point in 
each run. 
level was a- reduction in the signal to noise ratio, the level ,of the injected 
noice being held constant during the run. The maximum value of the tes t  
signal, without noise, and which occurred a t  the beginning of the run had 
an RMS value of 7 volts. The wideband noise added to this had an RMS 
effective value a t  the output of the detector of 2 volts. 
to noise ratio a t  the higher frequencies effectively demonstrated the value 
of optimum filtering in characterizing the time-varying spectrum of the 
signal. 

determines the rate of decay of the amplitude of the tes t  

To prevent instability in the 

To ensure 

A secondary effect which resulted f rom the decreasing signal 

The decreasing signal 

The output of the nonstationary spectrum analyzer i s  shown in 
11 . Figure 

ryn with the analyzer tuned to the particular frequency indicated a t  the left 
of that line. The same tes t  signal (80) , identically generated with wide- 
band noise added, was applied to the input of the analyzer for  each run. 

clearly shows the effect of 
the time smoothing which occurs in the post-detection filter.  This line, 
displays the D. C, level of the signal vs.  time and shows that the D. C. 
level eventually decreased to a small value (the noise level). A 
theoretically perfect nonstationary spectrum analyzer, which i s  unrealizable, 
would have displayed zero everywhere except a t  l = O  at which point there 
would be an impulse equal in strength to the value of the signal at 

Each line (running upward to the right) represents a single 

The f i rs t  spectral line u =o 

Z' 0 
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The remaining spectral lines exhibit peaking in response a t  the 
proper time in each run, i. e . ,  the 20 radian line peaks a t  20 seconds, e tc . ,  
with the amplitudes decreasing exponentially according to equation (80) 
The overall effect of Figure 11 i s  to show that the frequency content of the 
tes t  signal is slowly shifting with time. It should be noted that a conventional 
stationary spectrum analyzer would only indicate that particular frequencies 
were present in the signal and would give no indication of when the particular 
frequencies appeared. 
quency smoothing is applied to a nonstationary signal that particular 
frequencies can be resolved in time. 

It i s  only when an optimum amount of time and f re-  

Conclusions to the Spectrum Analysis 
of N on stationary P roc e s s es 

A new and essentially different approach to the spectrum analysis 
of nonstationary signals has been described. 
and frequency smoothing to determine the presence of bands of frequencies. 
A prior i  knowledge of the time variations may enable the spectrum analyzer 
to be designed in an optimum manner for a particular type of nonstationary 
process.  
has been analyzed by this new technique and the results show that the 
method i s  indeed useful for determining the frequency content a s  well a s  the 
nature of the time variations for this class of nonstationary signals. 

This technique utilizes both time 

A tes t  signal representing a wide class on nonstationary signals 
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A THEORY OF NONSTATIONARY 
CORRELATION ANALYSIS* 

It is generally recognized that the design of a correlator o r  spectrum li 

analyzer for the analysis of nonstationary signals is a difficult task. 
difficulty i s  the result of several  problems. 
defining a meaningful correlation or  spectral function. 
possess characteristics which a r e  favorable to mathematical analysis and 
which yield to intuitive insight. 
the analyzer which is to detect the defined nonstationary function. 
synthesis procedure cannot be undertaken until after the fundamental uncer - 
tainties which shroud the nonstationary detection problem a r e  understood. 
These uncertainties place definite bounds upon the accuracy with which non- 
stationary analyses may be performed. A third serious problem involves 
the fact that synthesis procedures will generally require a priori  knowledge 
of the correlation o r  spectral function which is  to be detected -- a most  
unsatisfactory situation. 
and overcome i f  a meaningful theory of nonstationary analysis is to be 
ob.tained. 

This 

This function must  

Then, there is the problem of synthesis of 

First, there is the problem of 

The 

All of these problems must  be carefully considered 

Two previous approaches have been use5for  nonstationary analysis. 
They a r e  the "ensemble approximation" approach fand the "short-time" 
a p p r ~ a c h ? ~ ,  26 In the former ,  the basic concept upon which the analyzer 
i s  designed i s  that of approximation of an  ensemble spectrum when only a 
single pair of time-waveforms i s  given. This approach places in clear  
perspective the uncertainties involved in  the analysis of a nonstationary 
process, but the approach is extremely difficult to make mathematically 
rigorous. 
ministic spectrum o r  correlation function; but the detected information i s  of 
limited value, since it cannot be related to network or  optimization theory. 
The latter approach is helpful primarily in gaining intuitive insight regarding 
the nons tationary process. 

The latter approach makes use of an exactly detectable, deter-  

In this report, the underlying philosophy is closely related to that 
described in Reference 24. The concept of approximating the ensemble 
correlation function by processing a single pair of time waveforms is used. 
However, in this report  an exact correlation analyzer synthesis procedure 
is developed using the methods of applied mathematics. 

Definitions and Basic Relationships 

The optimal synthesis procedure is  initiated with the definition of the 
cross-correlation function and the choice of a correlation analyzer configur- 
ation which possesses special properties. 
involve c ross  -correlation function analysis. 
i s  then handled as a special case. 

The derivations which follow 
Autocorrelation function analysis 

+ This section was written by Dr. Walter W. Wierwille. 
involved is attributed to him. An earl ier  version of this theory, which 
did not include experimental verification, can be found in Reference 35. 

The theory 
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Let X,(%J and cc;(AJ be defined as a given pair of signals which 
a r e  to be cross-correlated. *, The independent variable /t designates present 
time. This pair  of signals is assumed to ba one member pair of an  ensemble 
of signal pai rs  & . c , ( t J  and * & f d  , where k designates the par'ticular pair 
under consideration. 
number of the given signal pair has been omitted.) Then the ensemble c ross-  
correlation function i s  designated by the operation 

(For  convenience, the subscript designating the ensemble 

@,brL (kt;?) z < - c , h = j A z ( d - ? ) >  ; Z a c  (81) 

where the angular brackets represent  an as yet unspecified averaging operation 
on the lagged products, c,r&) K d L ( d - F ) .  ** The function er ( d , ~ )  i s  left 
undefined for '7~ o , since negative delays o r  pure predictions a r e  generally 
unrealizable in a real-  time solution. 

The configuration which is chosen for the correlation analyzer is  that 
shown in Figure (12). It i s  seen that the signal, 
a filter whose impulse response i s  at&) . The output of the filter i s  delayed 
by 7 seconds. Then .~;(.d and the output of the delay device a r e  multiplied 
together and smoothed by the linear filter whose impulse response i s  X(k1 . 
This configuration is more  general than those previously used for correlation 
in that the filtering operation represented by 1l.k) is incorporated. Also, / ( A )  
and 4/21 a r e  general linear filtering operations which a r e  to be specified by 
the optimization process. 

rc;/~) , i s  f i r s t  passed through 

A remarkable property of this analyzer configuration is that i t  makes 
the f axis filtering problem and the 3- axis filtering problem independent of 
each other. 
correlation analyzer is written in t e rms  of the input signals, 

To illustrate this independence property, the output signal of the 
and . 

*: Thii  report deals with the continuous (as  opposed to sample-data) case of 
correlation. An analogous theory of correlation can be developed using 
discrete sequences and summations in place of the continuous functions 
and integrations. 

From the standpoint of the derivation which follows, i t  i s  unnecessary to 
fully define the averaging operation in equation (8P). 
property of allowing interchange of order with the integrations which a r e  
performed in the derivation. 

.Ir .I. .,. .,. 
It must  possess the 

One possible definition that can be used is 

when the right-hand side exists. 
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If’ -A(&‘ and represent physically realizable filtering operations, then 
the output signal is 

where A and b“ a r e  variables of integration. I f  an  ensemble average is 
performed over the output signals for each pair of input signals, then 

The independence property is exhibited by the integral of equation (83), wherein 
operates only on the t axis and &‘&I operates only on the 7 axis of the 

function p,L (Z)t,yj. Since each filtering operation processes information in 
only one axis, the mathematical synthesis procedure for the two f i l ters  i s  
simplified without 10s s of generality. 

This analyzer configuration possesses other desirable properties. 
An important one i s  that the ensemble average output i s  unbiased for uncor- 
related stationary or  nonstationary input signals. :% Additionally, the output 
of the correlator operating on &,/A) and -C,(-t/ i s  unbiased over time if x,(A/ 
and x,fd/ a r e  stationary, ergodic, and uncorrelated. These properties a r e  
important, for they show that the correlator does not yield steady, false 
indications of. correlation. 

Development of a Performance Measure 

There a r e  three sources of e r ro r  which must be considered in the 
synthesis of a correlator for nonstationary signals. These sources of e r ro r  
exist regardless of the approach taken to nonstationary correlation analysis, 
even though they have not been fully recognized in the past. 
take synthesis, i t  i s  necessary to develop a performance measure which 
accurately assesses  these three sources of e r ro r .  
minimized so a s  to yield the optimal values of the filters, Aft/ and A/A/ . 

In order to under- 

The measure may then be 

:% An ensemble of uncorrelated nonstationary signals is defined to possess 
the property 

where dfr) i s  the Dirac delta function. 27 Then, a s  long as 
the analyzer configuration yields unbiased outputs. 

77 0 , 
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The evaluation of the performance measure must  not require a pr ior i  
knowledge of the correlation function which is being detected, since the existence 
of this knowledge would make the subsequent correlation analysis pointless. 
One way of avoiding the problem of required a pr ior i  knowledge is to choose 
representative, known, tes t  correlation functions and then to minimize the 
three sources of e r r o r  in detecting them. 
analyzer will work well in detecting correlation functions in  the same general 
class as the known functions upon which it was optimized. 

It is then assumed that the correlation 

The optimal solution which is obtained will be heavily dependent upon 
the particular performance measure chosen to represent the e r ro rs .  
mathematically feasible to obtain a number of solutions by minimizing various 
performance measures,  and "then to choose that particular solution which is 
best suited to the experimental data to be analyzed. 
a single case is described in detail. 
representative cases  . 

It is 

In the next two sections, 
Appendix I then summarizes two other 

The three sources of e r r o r  in the output of a correlation analyzer are:  
1) distortion (o r  e r ro r )  of the true ensemble correlation function @,,c-t,?J along 
the A axis, 2)  distortion (or e r ro r )  of cp , , (~~p)  
inevitable noise o r  instability in the output of the analyzer which results from 
the components in the product ~.,/-e) +&-rJ which a r e  extraneous to the ensemble 
average, 
by considering the product +/ - t .Jr ,~ - r j  to be made-up 
function 4,(4e;) and the noiselike extraneous component nfq7J . Then the 
output of the correlator is 

along the 3- axis, and 3) the 

@, ( 4 , Y J  , * These three sources of e r ro r  a r e  most  readily visualized 
of 'the sum of the ensemble 

rL(q Y j  = / / A ( A ] d @ )  et (A-/\ ,b"u7)dP~!A 
J o  

The objective will be to make the f i rs t  integral approximate 
closely a s  possible while making the second integral a s  small in value a s  
po s sible. 

q$&f;t, yJ a s  

Distortion Along the A Axis. - In order to quantify the distortion of 
the true ensemble correlation function produced by the output of the correlation 
analyzer, the first integral of equation-(84) 
senting the distortion can be defined a s  the difference between the true 
correlation function and this f i r s t  integral, that is 

i s  examined. -An e r ro r  repre-  

")e 

e&(.firl E @&(A,?.) -[ph)dP)eA f A - A \ ,  a?+;"jrgr&4 j 

7-30 (85) 

The third source of e r ro r  may be equivalently considered a s  the result of 
finite statistical averaging time, which always produces instabilities in 
the statistical estimates obtained. 

.(r T 
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At this point it i s  necessary to choose an ensemble correlation function 
and an e r r o r  measure which will serve  a s  a tes t  of the distortion along the 
;t axis. A rather elementary, but effective, tes t  function is the following: 

That is, the test  correlation function i s  a ramp beginning a t  A?= u . The 
correlation function i s  assumed uniform in 7 for Y p  o .* (This ensemble 
correlation function can be realized by ideal components a s  shown in Figure 
13 .) 

and integrating over time. 
An e r r o r  measure can be formed by squaring each side of equation (85 ) 

Then it i s  found upon substitution that 

m 

where L - f i ( ? - ) d l  
t 

and 5 (t, =pa) k-WA 

= ramp response of the filter whose 

impulse response is h P ) .  

The quantity & 
distortion of qald,7)  along the t axis. 

can be considered as a general measure of the analyzer’s 

Distortion Along the 7 Axis. - Distortion along the .t axis can be 
Equation (85 ) handled in similar ,  but slightly more complicated, manner, 

i s  used once again, but a different test function and measure a r e  considered. 
One test  function which adequately tests the distortion along the 7- axis is the 
triangular function. In practice, nearly triangular correlation functions a r e  
often encountered, since in general correlations tend to zero as ;r becomes 
large. 
a triangular correlation function, the distortion will also be small for any 
correlation function which can be approximated by a group of staggered 
triangular functions. Let 

It can be assumed that, if the distortion i s  relatively small in detecting 

:;< The assumption that the tes t  function i s  uniform in 7 makes possible 
the s v d y  of distortion along the k axis without interaction of the 7 axis 
distortion. 
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In this case,  it i s  being assumed that the ensemble correlation function is 
uniform in time; that is, it i s  stationary. (This ensemble correlation function 
can be realized by ideal components as shown in  Figure (14). ) If the e r r o r  
described by equation ( 8 7  ) is squared and integrated over ir , the result will 
serve  a s  a measure of distortion along the 7 axis of ~$,/.t, YJ : 

= ramp response of the filter 

whose impulse response is A h .  

Noise in the Output of the Correlator. - A correlator of nonstationary 
signa-ls, which operates upon a member pair of an  ensemble of functions, will 
have a noise-like component in i ts  output signal. 
component i s  the result of that portion of the input signal pair which is 
unrelated to the true ensemble correlation function. 
equation (84 ) describes the effect of this noise on the detected correlation 
function. 

This noise o r  instability 

The second integral of 

A s  discussed previously, in order to a s se s s  the effect of this- noise 
component, it is necessary to choose a noise signal and a measure which 
adequately test the smoothing characteristics of the analyzer. It  must be 
remembered, however, that an average other than an ensemble average must 
be used for the noise test,  since an ensemble average of the function n U, YJ i s  
zero. Essentially, a single pair of noisy time waveforms must be used to test  
the immunity of the analyzer to noise o r  instability. 
response of the analyzer to uncorrelated signals which a r e  generated by a 
stationary and ergodic Gaussian process. This set  of input signals can be 
considered a s  an  extreme test  because signal power exists a t  a l l  frequencies, 
and therefore all frequencies a r e  tested. 

A very good tes t  i s  the 

A good measure of the noise o r  
P 
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instability is the variance of the output of the correlator for the two uncorrelated 
input signals described above. This variance can be written a s  r 

where a bar  over a quantity indicates a time average.* If advantage i s  taken 
of the theorems for Gaussian processes,28 it i s  found that 

If equation (91 ) is substituted into equation ( 90  ), it is easily shown that the 
second and third terms of equation (91 ) contribute nothing to the value of the 
variance for ?->a : Then, integration of the remaining term fixst with respect 
to A, and then with respect to yields the result that 

?a = 1-h) 64A .[>%P/ 47 ; i” 7 0 (92) 

Equation ( 9 2 )  describes in a straightforward way the variance of the corre la tor’s  
output for an  uncorrelated set  of input signals. 
the noise o r  instability in the output of the correlator. 

It represents,  in a general way, 

:g The variance of the output i s  equal to the mean-squared value of the 
output, since for uncorrelated input signals the output is unbiased. 
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Performance Measure. - The performance measure for the correlation 
analyzer may now be defined a s  the sum of the three e r ro r  measures given by 
equations (87  ), ( 89), and ( 9 2  ). 
relative weights to be placed upon each measure a r e  arbitrary;  that i s ,  i t  i s  a 
matter  of choice to decide how important each of the three sources of e r r o r  i s  
to the design of the analyzer. 
be written in the form 

However, i t  must be recognized that the 

Accbrdingly, the performance measure should 

where A: and A,” a r e  arbi t rary  positive constants. There i s  no need to 
associate a coefficient with the measure  p, , because 0 may always be 
normalized such that the coefficient could be made equal to unity, without any 
change in the optimal uesign. 

It i s  important to realize that there a r e  two uncertainties with which 
one must deal in the design of a nonstationary correlation (or spectral) analyzer. 
These uncertainties make it impossible to detect a statistical nonstationary 
function, such*as a correlation function without e r ro r .  

e r r o r s  on each axis of the detected correlation functions and noise o r  instability 
in the output of the analyzer. 
recognized if a meaningful correlator design i s  to be developed. 

The two constants 
Ai and A, represent  the compromises which must be reached between 

These uncertainties a r e  fundamental and must  be 

Design of the Correlation Analyzer 

Since the nonstationary correlation analyzer configuration has already 
been specified, the completion of the analyzer design consists of determining 
the two filtering operations represented by &/-. and Jlk) , a s  shown in 
Figure 12. 
measure,  0 , given by equation ( 9 3 ) .  
in the optimum analyzer design, thereby specifying Rl.t)and dfk) . 

These f i l ters  can be determined by minimization of the performance 
Minimization of this measure will result 

In the minimization process,  the following assumptions will be made 
regarding the filtering operations: 

W 
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and 

( 97 )  

The f i rs t  two conditions require that the unit step response of each filter will 
eventually exhibit correspondence by settling a t  unity. 
conditions force the ramp response and the step response of each filter to 
begin a t  zero amplitude. The las t  two conditions require that the unit ramp 
response of each filter will eventually exhibit correspondence by settling to 
a unit ramp. 
may be written in the form 

The second two 

Under this group of assumptions, the performance measure 

where the impulse response of each filter is written a s  the second derivative 
of the corresponding ramp response. 

If 0 in equation (100) is  minimized, then it will be found that one 
condition on the optimal solution is  that 1 fp )  Z- 0 for all @>% . 
i s  the result of the finite upper limit on the integral in Pp . The requirement 
that A'CP) be zero over a finite interval will require that the transfer function 
corresponding to R ( r )  be other than the ratio of two finite polynomials in the 
complex frequency variable. 
would have to .be developed, and would yield only an approximate optimal 
solution. It i s  believed that the spectral approximation procedure would 
unduly complicate the solution to this problem, and that it would not reduce 
by any worthwhile amount the e r r o r s  in the correlation analyzer. 

A straightforward method for circumventing the above problem is to 
add a further condition to the performance measure which insures competition 
between the ramp response e r r o r  and the noise e r r o r  of lC&) for al l  positive 

This condition 

Accordingly, a spectral approximation procedure 

7 . The condition which should be added i s  
/ -  
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which produces a form of the performance measure which yields to analysis 
and which produces str ict ly realizable transfer  functions for Sh' jand X ( h )  . 
The new performance measure is the same as that given in equation (100) 
except that the upper limit on the second integral is now taken to be infinite. 

Calculus-of -Variations Solution, - The performance measure can be 
minimized by means of the calculus of variations. The method of solution used 
herein is similar to (but is more  comple3JEan) one reported previously in 
regard to optimization of radar trackers.  
variations in each of the functions $fa) and G"A(). 
substituted into the performance measure,  0 , yield the following two variational 
equations: 

The solution is initiated by taking 
These variations, when 

and 

where 4' and a r e  small, arbitrary constants and w,(P) and qxin) 
a r e  the variations in  c(;r) and G ( A )  , respectively. From this point the 
derivation i s  carr ied  forward for the optimal value of .&<E) only. The form 
obtained for 4 ( A j  will be the same a s  that obtained for l / p J  . 

The usual calculus -of -variations procedure is followed. Form the 
equation 
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Integration by parts  , applied twice, then allows the resulting equation to be 
written as 

The f i r s t  two t e rms  of this equation a r e  each equal to zero. The 

[equation (97  ) ]  and b"= 00 [equation ( 9 4  ) which requires that 
f i r s t  t e rm  i s  zero because the step response of l' (6) has been specified at 
both r =  0 

a t  these points, which makes the first term equal to zero. 
zero because 50) has been specified a t  d". o and #.I 4 , thereby making the, 
variation n~ equal to zero a t  these points. By the fundamental theorem of 
the calculus of variations, the Euler differential equation for the extremals 

e & d r p j =  01. Therefore, the derivative of the variation 20 must be zero 
The second te rm is 

wher e 

The solution of this differential equation is  of the form 

The solution is valid for '7 3 o only. Since the solution must eventually 
converge to a unit ramp, the growing exponential t e rms  must  have zero 
coefficients. Consequently, C = o and O =  0 Also, i f  advantage is taken 
of the specifications given by equation ( 9 6  ), the solution can be shown to 
take the form 
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The Laplace transform of this ramp response, R, ( 5 )  , is found to be 

Therefore, the transfer  function of the optimal f i l ter ,  
transform of the impulse response A C S )  ), i s  given by 

L(J’) , (the Laplace 

The transfer  function, H ( S )  , of the optimal filter whose impulse 
response i s  A ( h )  is found to possess the same form: 

where 

It i s  seen that the constants A ,  and 1, a r e  interdependent. 
Consequently, i f  A, and -& a r e  to be evaluated in terms of / t f  and A: 
(the original weights of the performance measure),  i t  is necessary to remove 
these dependencies. 
the &$)and A(A] into equations (106) and (112). 

This can be done by substituting the optimal values of 
Simultaneous solution then 

yield s 

and 

Accordingly, equations (110)~ (111 ), (113), and (114 ) specify the forms of the 
optimal f i l ters  in terms of the weights in the performance measure.* In 
certain cases,  the constants 4, and 42 may be chosen f i rs t ,  in which 

%k This calculus-of-variations solution yields only one extremal. 
to prove that this extremal produces minimum correlator e r r o r  (according 
to the given performance measure). The proof i s  obtained by showing that 
1 (a’) in equation (101) and I(Q) in equation (102) a r e  always greater  

than or  equal to 8 when the optimal values of 5 (r)  and G“x(\) a r e  
substituted. 

It i s  easy 

61 



a 
case it may be desirable to determine the values of ?I, and h: , which 
have then been implicitly chosen. 
be: 

The reciprocal relationships a r e  found to 

and 

The design of the nonstationary correlator has thus been completed. 

It should be mentioned that, although i t  is possible to evaluate the 
three terms in the performance measure for any setting of hy and kt , 
the results a r e  of little practical value in determining good settings for A,. 
and A, Experimental study has shown that a good procedure i s  to set  

based upon bandwidth and resolution considerations of LlSJ . After- 
ward, 
noise smoothing i s  obtained. 

i s  set  by means of a preliminary ekperiment so that sufficient 

Experimental Study 

An extensive experimental study was performed to verify and determine 
the usefulness of the theory of correlation described in this report. The theory 
as described herein is  exact, so that it i s  only necessary to insure its correct-  
ness. 
signals which were similar to the three tes t  signals used in  the mathematical 
optimization process. The usefulness of the theory was studied by having the 
analyzer detect a known nonstationary cross-correlation function which i s  
similar to that obtained in practice, but i s  entirely different from the three 
tes t  functions. 
section. 

The correctness was established by having the analyzer operate on 

The experiments and results a r e  briefly described in this 

The experiments were  all performed on an E. A. I. model TR-48 
analog computer with an additional TR-20 used a s  a slave unit. A high quality 
wide-band noise source was used to approximate the uncorrelated input signal 
required in each experiment. 
7 channel F.M. tape recorder.  
playback heads physically separated, it was possible to obtain pure time delay 
of the original noise signal by recording the output of one channel onto the next 
channel. Special filtering and amplitude reference signals were used to main- 
tain the quality of each reproduction, In this way i t  was possible to obtain six 
equally spaced values of delay of the original waveform ( the  samples being 
0 . 7 3 3  seconds apart). In order to obtain delay values between those available 
f rom the tape recorder,  a new technique was used which requires only standard 
analog computer components. 30 
large delays, and the new delay technique was used for additional vernier delays 

This signal was recorded on one channel of a 
Then, since each channel had the record and 

Thus, the tape recorder was used for the 

c 
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between those of the tape recorder. 
serially; that i s ,  data for each given value of delay were  recorded separately. 
These data were then combined on the three dimensional graphs, which a r e  
the results of the experiments. 

All of the experimental runs were  made 

Experiment 1 

b 

This experiment was composed of three parts ,  each par t  representing 
one t e rm  of the performance measure,  0 . The objective was to determine 
in a qualitative way the ability of the analyzer to detect the correlation functions 
of signals similar  to those for which it had been optimized. 
of the experiment and the results obtained a r e  briefly described below: 

The three parts  

1) Autocorrelation of the wide-band, stationary, random input 
signal. 
noise tes t  of the analyzer. 
experiment (See Figure 15 ) indicate 
a r e  uncorrelated for the three values of delay which were 
used. 
which always accompanies the detection of a random process 
using finite averaging time. 
infinite in amplitude (it i s  infinite for a theoretical uncorrelated 
process) because of the finite bandwidth of the input signal and 
because of the smoothing of the 7 axis information by the filter,  

This test  approximates the theoretical uncorrelated 
The steady-state results of the 

that the input signals 

They also show the inevitable noise o r  instability 

The line of data for 7=0 i s  not 

A(k1 . In this experiment R,= 1.06 and .Ak= a005zy. 

2) Cross-correlation of the output of a network, whose impulse 
response i s  a single exponential with a time constant of 2 . 2  
seconds, with the wide-band input to the network. This tes t  
approximates the distortion test involving the stationary, 
triangular correlation function. It  would be expected that the 
e r r o r s  in detecting this correlation function should be small,  
since the analyzer was optimized on a similar  correlation 
function. 

The steady-state results of the experiment (See Figure 16 ) 
show that the e r ro r s  in detection a r e  indeed small. The 
theoretical curve of the correlation function i s  the dotted line 
a t  the front of the plot. 
that the analyzer is responding in a manner which is consistent 
with the mathematical results obtained earl ier .  

It can be concluded from this plot 

The values of 
and dd were the same a s  for the above experiment. *, 
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3) Cross-correlation of nonstationary signals whose theoretical 
ensemble cross-correlation function is a slowly rising ramp 
in time. This tes t  is similar to the theoretical test of distortion 
along the ;t axis. An experimental generator similar to that 
shown in Figure 13 was used. The analyzer’s transient output 
beginning at A?= o was recorded. Because of the similarity of 
the responses, only one has  been plotted. 

The results of this experiment (See Figure 17 ) show that the 
analyzer is capable of accurately follpwing slow ramp changes 
in the nonstationary correlation function. 
appreciable undershoot nor overshoot. 
clear  that the analyzer is responding in  an  optimum manner for 
this form of input. and ?h> 
were used. 

It shows neither 
Therefore, it is quite 

Once again the same values of 

The results  of Experiment 1 show conclusively that the analyzer 
responds in practice in a manner which the foregoing theory has indicated. 

Experiment 2 

The objective of the second experiment was to evaluate the analyzer’s 
performance in detecting a nonstationary correlation function which was 
significantly different from the three upon which it had been optimized, but i s  
typical of correlation functions found in practical situations. 

The nonstationary input signals for the analyzer were generated by 
applying <he wide-band input signal to the inputs of each of two networks. 
After the analyzer had reached a steady-state condition in measuring the 
cross-correlation between output and input of the f i rs t  network, the analyzer 
input was switched so as to measure  the cross-correlation between the output 
and input of the second network. 
change in time in the ensemble correlation function being detected. 
both networks a r e  known, it makes possible the study of distortion along the 

This type of arrangement produces a step 
Also, since 

7 axis. 

The two networks used to generate the input signals had impulse 
responses given by 

,t’ -t 
2 0  

c p )  = -3.w e uI’Is + 1.19 e (117) 

and 
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The 
cross-correlation functions of this form can be predicted by performing an 
unfolded convolution of 4 ~ )  with each of the above responses. (This result  
can be proved by obtaining the ensemble c ro s s  -correlation function between 
the output of the networks whose responses are g,(*Iand $2~&) and the output 
of the analyzer network given by A&) . ) Thus, this distorted steady-state 
output of the analyzer should be 

7 axis distortion that the analyzer produces (in steady-state) in detecting 

for the first network, and 
1 7  * 

for the second network. These two theortical, distorted responses were  
computed digitally and have been plotted using dotted lines at each end of the 
experimental plot of Figure 18 . 

The remainder of the plot of Figure (18)shows the experimental data 
obtained. It is seen that the 7 axis distortion in steady-state has been 
accurately predicted. The fact that the correlation function changes abruptly 
in time (at # = 160 seconds) rather than changing as a ramp, indicates that 
A(&) is not longer optimum. A s  a result,  the response of the analyzer over- 
shoots somewhat before settling to the new values of the correlation function. 
Once again the noise o r  instability is present. 
se t  at 
smoothing than was used in the first set  of experiments. 

The analyzer constants were 
=%/2 andd$=d.Oozz# . T.his setting of constants afforded less  noise 

Although distortion exists along each axis of the correlation function 
and noise exists in the measurements, it i s  evident that the detected information 
would be valuable in classifying and understanding the process from which the 
signals were generated. 
functions using the techniques developed in this report  will be heavily dependent 
upon the degree of resolution required along the 7 
dependence of the ensemble correlation function upon i ts  past values (in A? ). 
These two factors determine the amount of noise smoothing which may be 
incorporated in the analyzer without producing excessive distortion in the 
detected information. 

The ability to detect nonstationary correlation 

axis and the degree of 

Conclusions to the Study of 
Nons tationar y Signal Proce  s sing 

It has been shown that a correlation analyzer for nonstationary signals 
may be synthesized by proper definition of a nonstationary correlation function, 
choice of an  analyzer configuration, and choice of a performance measure. 
Subsequently, the optimal filtering operations may be determined by means of 
the calculus of variations. 
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Two fundamental uncertainties exist in the design of a correlator for 
nonstationary signals. The f i r s t  involves a compromise between distortion 
along the running time axis of the detected correlation function and noise in 
the output of the analyzer. The second involves a similar  compromise 
between distortion along the delay (or 7- ) axis of the detected correlation 
function and noise in the output of the analyzer. 
uncertainties can be minimized by performing a minimization of a performance 
measure which accurately assesses  these de€rimental effects. 
configuration which results i s  then considered to be optimum. 

The detrimental effects of 

The analyzer 

It i s  anticipated that better results  could be obtained with this new 
nonstationary analyzer a s  compared with other analyzers. The fact that other 
analyzers do not include the filtering operation represented by A&) indicates 
that maximum noise smoothing i s  not being accomplished. Moreover, other 
analyzers a r e  not generally optimized to take maximum advantage of the 
limited amount of raw data available. 

Experiments have been performed which show that good correspondence 
exists between the mathematical aspects of the theory and their counterparts 
in-practice. 
was not optimized, the analyzer continued to operate acceptably. 

Moreover, for a typical example, but one for which the analyzer 
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CONCLUSIONS 

The purpose of the research presented in this report  was to satisfy 
the Computation Laboratory requirements of (1) studying and applying the 
available random data processing techniques to the existing MSFC problems, 
(2) develop new and improved techniques of data processing. 
discussion indicates that the above requirements a r e  satisfied. 

The following 

Digital Filtering. - Selection of an appropriate sampling interval 
which produces negligible frequency folding i s  paramount to accurate digital 
data processing. 

The vast. amount of literature available which describes digital 
simulation of transfer functions from the time response point of view can 
be utilized to produce prewhitening filters having specific frequency 
characteristics. 

Application of equation (13) along with the information contained in 
Appendix B allows the synthesis of discrete filters with sharp frequency 
cutoff characteristics. 
non-real-time data processing. 
obtain f i l ters  with integrating o r  differentiating qualities. 

The fi l ters  so generated a r e  applicable to all 
The same techniques can be applied to 

Taking the Tustin Transform (see  Reference 15) of an analog notch 
filter w i l l  produce a digital filter which can be used for prewhitening, with 
the possibility of total rejection of one freqyency. These notch filters con- 
tain relatively few weights. 

In situations where the power spectral density function of only a band 
of frequencies is of interest,  digital hetrodyning as  discussed in the report 
may provide a computational time savings in data processing. 

' Correlation Functions. - After reading the analysis of different 
methods of estimating correlation function, one should conclude that 
modifications should be made to any existing computational technique 
that does not consider (1) the accuracy of estimates and (2) the computer 
time required. Many types of correlation function estimators a r e  given 
(autocorrelation being a special case of cross-correlation). 
stady of the "half-polarity" correlator is presented. 
a r e  outlined, which w i l l  calculate, in minimum time, the "half-polarity" 
and "full-precision" correlation functions. 
correlation computational techniques given in the reference are applicable. 

Extensive 
Computer programs 

It is also suggested that 

Optimal Smoothing of PSD. - The appropriate application of 
equation (69) wil l  produce spectral estimates with greater  accuracy and 
also eliminate the need for prewhitening of the signal prior to processing. 
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Deterministic Processing. - In many situations the source of the 
signal to be analyzed and the information to be extracted may dictate the 
use of a deterministic approach as indicated by equation (70). 
approach requires no smoothing o r  prewhitening and will not yield negative 
power in the final spectrum. 

This 
, 

r 

Nonstationary Spectrum Analysis. - A new and essentially different 
approach to the spectrum analysis of nonstationary signals has been described. 
This technique utilizes both time and frequency smoothing to determine the 
presence of bands of frequencies. 
may enable the spectrum analyzer to be designed in an  optimum manner 
for  a particular type of nonstationary process. 
a wide c lass  on nonstationary signals has been analyzed by this new technique 
and the results  show that the method i s  indeed useful for determining the 
frequency content as well a s  the nawre  of the time variations for this class 
of nonstationary signals .  

A prior i  knowledge of the time variations 

A tes t  signal representing 

Nonstationary Correlation Functions. - It has been shown that a 
correlation analyzer for nonstationary signals may be synthesized by proper 
definition of a nonstationary correlation function, choice of an analyzer 
configuration, and choice of a performance measure. Subsequently, the 
optimal filtering operations may be determined by means of the calculus 
of variations. 

Two fundamental uncertainties exist in the design of a correlator 
nonstationary signals. The first involves a compromise between distortion 
along the running time axis of the detected correlation function and noise in 
the output of the analyzer. The second involves a similar compromise 
between distortion along the delay (or 3 ) axis of the detected correlation 
function and noise in the output of the analyzer. 
uncertanties can be minimized by performing a minimization of a performance 
measure which accurately assesses  these detrimental effects. 
configuration which results i s  then considered to be optimum. 

The detrimental effects of 

The analyzer 

It is anticipated that better results could be obtained with this new 
nonstationary analyzer as compared with other analyzers. 
other analyzers do not include the filtering operation represented by A?&) 
indicates that maximum noise smoothing i s  not being accomplished. 
over, other analyzers a r e  not generally optimized to take maximum advantage 
of the limited amount of raw data available. 

The fact that 

Move- 

Experiments have been performed which show that good correspondence 
exists between the mathematical aspects of the theory and their counterparts 
in practice. 
was not optimized, the analyzer continued to operate acceptably. 

Moreover, for a typical example, but one for which the analyzer 
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RECOMMENDATIONS 
FOR FURTHER WORK 

Throughout the course of performing the research and experimentation 
of a project, the investigator invariably "uncovers" new work a reas  and more  
work in the same areas .  Typically this new o r  extension type work is beyond 
the scope of the available time and allotted funds for contract. The following 
a reas  of work a r e  recommended as extensions to the research summarized 
in this report. 

1. 

2. 

J 

3.  

* 
b~ 

. .  
1 4. 

5. 

6. 

Nons tationary P'roce s s e s  

a)  
b) 

Expand the applicability of the nonstationary correlator 
Trea t  the NASA data with the nonstationary correlator 

Process  Testing 

a) Test  for stationarity 
b) Test  for class of process,  e. g. Bivariate gaussian, 

c)  
Rayleigh, etc. 
Test  of accuracy of estimates 

Flow Chart of Generalized Processor 

a) Decision making logic 
b) 
c)  Time saving realized 

Application of Special Purpose Computers 

a)  
b) 
c) Use of hybrid equipment 

Accuracy realized by each processor 

Use of analog processors for complete data analysis 
Use of analog equipment for  preprocessing of data 

Digital Correlation Function Computation 

a) Stielje 's correlator. Rather than use the two levels of 
the half-polarity correlator,  use three, five o r  more levels. 

b) Design high speed computer programs to compute Stielje's 
correlation. 

c) Further study of the half-polarity correlator. Investigate 
applicability to processes -other than bivariate gaus sian. 

d) Further study and hypothesis testing of the addition of 
white noise prior  to the half-polarity correlator. 

Transfer Function Estimation 

a) 

b) 

Determine the bestm. order estimate of a system transfer 
function. 
Apply to rocket vibration data to determine an analytic model 
of the system. 
control design also this information should be compared with 
models obtained from design considerations. 

This information vitally needed for booster 
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APPENDIX A 
OPTIMUM FILTER WEIGHTS 

Consider the following ideal frequency function 
i 

where 

It is desired to obtain an approximate frequency function which has a finite 
number of t e rms  in its weighting sequence say zhl+ 1 
realizable filter will be specified by minimizing the following e r ro r  index 

terms.  The actual 

where the realizable frequency function is given by 

The e r ro r  index can also be expressed in the following form 

J =  Jd‘ E&) E *(W, &d 
.- dC. 

r 

(A-3) 

(A-4) 

(A-5) 

P 

and the e r ro r  index becomes 
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where the contour i1 is the unit circle. Now using the discrete form of 
Parseval ' s  theorem we have 

Minimizing with respect to the c 's yield the following 
L 

(A-7) 

(A-8) 

43 (I 
Equation (A-8 ) indicates that the optimum realizable filter i s  obtained by 
taking the ideal weights intact that i s  no modification i s  needed due to the 
fact that only a finite number of weights a r e  used. 
aspect of equation (A- 8)  i s  that i t  indicates that the same number of weights 
should be used by each component filter. 

Another interesting 
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APPENDIX B 
LOW PASS FREQUENCY RESPONSES 

The relationship given below permits the frequency plots on the 
following pages to be inverted to visually produce a second set of 27 graphs. 

r 
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APPENDIX C 
OPTIMUM FILTER WEIGHTS WITH UNITY D.C. GAIN 

With the D. C. gain constraint added, the e r r o r  index becomes 

Minimizing the above index with respect to c, yields 

The above 
set  of ZNt2  linearly independent equations in ZN+Z 
is obtained a s  follows 

let  

2~ I +  1 equations a ong with the constraint equation comprise a 
unknowns whose solution 

a =  * "3s 
L 

L 
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Placing the ~ ~ 4 - 2  equations into matrix form yields 

Partitioning the above matrix and expanding yields 
A c - C  6 A  = k 

L ' c  = !  

where 

b =  
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Utilizing the above notation, the solution for  the optimum weights a r e  obtained 
f rom (C- 3)  and (C-4)  as follows: 

From the relations in (C-5 ) we have 

Substituting (C-7) into (C-6 1 yields 

I 

< 
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APPENDIX D 
CORRELATION FUNCTIONS AND 

POWER SPECTRA 

The results  of processing the four NASA records - 
E127# 11 
E 128# 1 1 
E12#3 
E12#4 

a r e  given in this Appendix. 
and half-polarity correlator a r e  plotted. The respective (Hanned) power 
spectral densities of the respective normalized correlations a r e  also plotted. 

The correlation functions for the full precision 

89 



90 



0 c 
U 

0 
W 
Qz 
n. 
A 
A 
3 
LL 

n 
W 
N 

I' 
3 

t: 
w ,  

N n 



9 2  



93 



94 



0 
I- 
d 

a 
w 
N 

n 
CT 
0 a 
w 
e 
LL 
0 

0 
W 
p. 
cn 
e 
w 
3c 
0 
p. 

95 



J 

96 



1 

97 



98 



99 



100 



101 



I' 

102 



CT 
0 
I- 

(1. 

103  

c 



J 

104 

. . L C  

u. 



h 

105 



APPENDIX E 

Flow Chart of the Rg correlator.  

ENTER 

DATA X( I) 
I = I ,  IMAX 

REMOVE THE 
MEAN OF X ( I )  

LAG = MAX LAG NUMBER 
i .e. 700 

I I 
SUB N X ( J - I ) ,  I I N  Y ( I )  ADD N X ( I - l ) ,  l } l N  Y( I)  I 

I } IN Y(2) I I PUT C A R S  I I N  Y(2) 

II 

W 



> 

YES LM(LL) = I - I 
~ 

LL = LL t I 
A 

I 

-4- 
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Q 

* THE AOS I S  NOT A COMMAND. 
IT  IND ICATES THAT THE 

APPROPRIATE ADD OR SUBTRACT 
COMMAND WILL BE INSERTED 
DEPENDING ON THE SIGN OF 

Y ARRAY 1 Y ( I )  A O S *  NX(LM1) , I 

Y(3 )  A 0  S NX( LMp) , I 
Y ( 2 )  A R S  I 

Y(Y )  A O S  N X ( L ~ )  , I 

Y(N) A O S  NX(LMMM) , I 
r(N+i)  TRA @ - 

PUT { TRA @)IN Y ( N )  

N = N-l 

c 
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APPENDIX F 
DERIVATION O F  THE E X P E C T E D  VALUE OF E,;(-) 

*= I 

Consider A 



Using the above diagram 

le t  

A = / !  - / 

TT N-7% 

WAf-m -- - 
The joint probability density function of 4, -v- is: 

where 

and 

Y 

? 
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let 

then 
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hence the second term B is 

and 

P 
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APPENDIX G 
GENERATION OF OPTIMUM 

SPECTRAL SMOOTHING WEIGHTS 

Obtaining an expression for the smoothing weights requires 
mihimizing the expected value of the following index: 

07 = 

7 

. 
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APPENDIX H 

SQUARED UNDER GAUSSIAN ASSUMPTIONS 
EVALUATION O F  THE EXPECTATION OF THE I?* CORRELATOR 

t 

The RL correlator is given by 

N-4 

Squaring the expression for in (H-1) yields 

Assuming the process under consideration i s  Gaussian, the above 
expression reduces to 

- 45,=t 2#ZC 
N-  # 

= ' 4,"t f N - j + l ) 4 ' +  2 
N- 3 

Another form of the above expression may be written a s  
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APPENDIX I 
OTHER REPRESENTATIVE PERFORMANCE MEASURES 

Choose the measure  
/ -  / *  

where &"(F) i s  the unit step response of R/$) and 

d4 i s  the uhit step response of A(A) . 
This performance measure  corresponds to the assumption that the three 
tes t  inputs a r e  

1) Uncorrelated noise 
2) 
3) 

An abi-upt step change in the correlation function with time 
A stationary rectangular correlation function. 

The optimal solutions a r e  

Choose the measure 

. where $" and (X: a r e  arbi t rary  pos"itive weighting constants. 

(1-4) 
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This performance measure  corresponds to the assumption that the 
three test inputs a r e  

1) Uncorrelated noise 
2 )  

3) 

An abrupt step changes in the correlation function with time, 
and a ramp change in the correlation function with time 
A stationary rectangular correlation function and a stationary 
triangular correlation function. 

Optimal solution A. 

where 

and 

(1-5) 

and 

for the condition that a' 3 9.d- 

H(S) will have the same form. 

Optimal solution B. 

L(sJ  = 

where 

P =  
(1-10) 

c 

I 

3 

5 
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and 

for the condition that 

& Z  c +A 

(I- 11) 

(I- 12) 

u(S] will be of the sa.ine form. 

In this solution, i t  is  possible fo r  the damping of the complex pole pair to take 
on values between 0.701 .c 6’ C 1.0 , ($=-#) . The parameter ,  .A- , 
will, of course, be depeden t  on a and b. 
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